Go Back   StudyChaCha 2024 2025 > StudyChaCha Discussion Forum > General Topics

  #2  
Old August 20th, 2013, 12:06 PM
Super Moderator
 
Join Date: Jun 2013
Default Re: Anna University 7th Sem Mechanical Syllabus

As you looking for the 7th Sem Mechnical Engineering Syllabus of Anna University so here I am providing you some content of the syllabus:

UNIT I Introduction
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of
manufacturing and service quality - Basic concepts of TQM - Definition of TQM – TQM
Framework - Contributions of Deming, Juran and Crosby – Barriers to TQM.

UNIT II TQM Principles
Leadership – Strategic quality planning, Quality statements - Customer focus –
Customer orientation, Customer satisfaction, Customer complaints, Customer retention -
Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition
and Reward, Performance appraisal - Continuous process improvement – PDSA cycle,
5s, Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating.

UNIT III TQM Tools & Techniques I
The seven traditional tools of quality – New management tools – Six-sigma: Concepts,
methodology, applications to manufacturing, service sector including IT – Bench marking
– Reason to bench mark, Bench marking process – FMEA – Stages, Types.

UNIT IV TQM Tools & Techniques II
Quality circles – Quality Function Deployment (QFD) – Taguchi quality loss function –
TPM – Concepts, improvement needs – Cost of Quality – Performance measures.

UNIT V Quality Systems
Need for ISO 9000- ISO 9000-2000 Quality System – Elements, Documentation, Quality
auditing- QS 9000 – ISO 14000 – Concepts, Requirements and Benefits – Case studies
of TQM implementation in manufacturing and service sectors including IT.

For more you will download the given attachment of PDF file:

Quote:
Originally Posted by Unregistered View Post
Hey I am looking for the 7th Sem Mechnical Engineering Syllabus of Anna University?
Attached Files Available for Download
File Type: pdf Syllabus of Anna University 7th Sem Mechnical Engineering.pdf (195.3 KB, 59 views)
Reply With Quote
  #3  
Old September 18th, 2015, 12:12 PM
Unregistered
Guest
 
Default Re: Anna University 7th Sem Mechanical Syllabus

I am the student of BE 7th Sem Mechanical Engineering of Anna University and want to get the Syllabus of it for the stuadies so can you please provide me this?
Reply With Quote
  #4  
Old September 18th, 2015, 12:16 PM
Super Moderator
 
Join Date: Dec 2011
Default Re: Anna University 7th Sem Mechanical Syllabus

Given below is the course structure of the BE 7th Sem Mechanical Engineering of Anna University

GE 2022 TOTAL QUALITY MANAGEMENT
ME 2401 MECHATRONICS
ME 2402 COMPUTER INTEGRATED MANUFACTURING
ME 2403 POWER PLANT ENGINEERING
ELECTIVE – II
ELECTIVE – III
ME 2404 COMPUTER AIDED SIMULATION & ANALYSIS LABORATORY
ME 2405 MECHATRONICS LAB

Anna University BE Mechanical Engineering Syllabus
OBJECTIVES:
•To enable learners of Engineering and Technology develop their basic communication skills in
English.
•To emphasize specially the development of speaking skills amongst learners of Engineering and
Technology.
•To ensure that learners use the electronic media such as internet and supplement the learning
materials used in the classroom.
•To inculcate the habit of reading and writing leading to effective and efficient communication.
UNIT I 9+3
Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds);
Speaking - Speaking about one’s place, important festivals etc. – Introducing oneself, one’s family /
friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making;
Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence
completion - Autobiographical writing (writing about one’s leisure time activities, hometown, etc.);
Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word
formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar
& Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.
UNIT II 9+3
Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process
(filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette;
Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions;
Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions -
Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement;
Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises
for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures –
Picture-based activities.
UNIT III 9+3
Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation -
Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading
and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing -
Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and
contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar -
Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of
words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary -
Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables
for interpretations.
UNIT IV 9+3
Listening - Watching videos / documentaries and responding to questions based on them; Speaking -
Responding to questions - Different forms of interviews - Speaking at different types of interviews;
Reading - Making inference from the reading passage - Predicting the content of a reading passage;
Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of
essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes -
Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary -
Sample interviews - film scenes - dialogue writing.
UNIT V 9+3
Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast
and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given
topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb -
Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct
and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials -
Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video
excerpts of different accents - Interpreting posters.
TOTAL (L:45+T:15): 60 PERIODS
OUTCOMES:
Learners should be able to
•Speak clearly, confidently, comprehensibly, and communicate with one or many listeners
using appropriate communicative strategies.
•Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide
vocabulary range, organizing their ideas logically on a topic.
•Read different genres of texts adopting various reading strategies.
•Listen/view and comprehend different spoken discourses/excerpts in different accents
TEXTBOOKS:
1. Department of English, Anna University. Mindscapes: English for Technologists and
Engineers. Orient Blackswan, Chennai. 2012
2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering.
Orient Blackswan, Chennai. 2011
REFERENCES:
1. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice.
Oxford University Press, New Delhi. 2011.
2. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi.
2006.
3. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
4. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
5. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi.
2008.
EXTENSIVE Reading (Not for Examination)
1. Kalam, Abdul. Wings of Fire. Universities Press, Hyderabad. 1999.
TEACHING METHODS:
•Lectures
•Activities conducted individually, in pairs and in groups like self introduction, peer introduction,
group poster making, grammar and vocabulary games, etc.
•Discussions
•Role play activities
•Short presentations
•Listening and viewing activities with follow up activities like discussion, filling up worksheets,
writing exercises (using language lab wherever necessary/possible) etc.
EVALUATION PATTERN:
Internal assessment: 20%
3 tests of which two are pen and paper tests and the other is a combination of different modes of
assessment like
•Project
•Assignment
•Reviews
•Creative writing
•Poster making, etc.
All the four skills are to be tested with equal weightage given to each.
Speaking assessment: Individual speaking activities, Pair work activities like role play,
Interview, Group discussions
Reading assessment: Reading passages with comprehension questions graded from simple to
complex, from direct to inferential
Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and
vocabulary.
Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as
well as audio/visual content.
End Semester Examination: 80%
OBJECTIVES:
•To develop the use of matrix algebra techniques this is needed by engineers for practical
applications.
•To make the student knowledgeable in the area of infinite series and their convergence so that
he/ she will be familiar with limitations of using infinite series approximations for solutions arising
in mathematical modeling.
•To familiarize the student with functions of several variables. This is needed in many branches
of engineering.
•To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are
needed in engineering applications.
•To acquaint the student with mathematical tools needed in evaluating multiple integrals and their
usage.
UNIT I MATRICES 9+3
Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of eigenvalues
and eigenvectors – Statement and applications of Cayley-Hamilton Theorem – Diagonalization of
matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of
quadratic forms.
UNIT II SEQUENCES AND SERIES 9+3
Sequences: Definition and examples – Series: Types and Convergence – Series of positive terms –
Tests of convergence: Comparison test, Integral test and D’Alembert’s ratio test – Alternating series –
Leibnitz’s test – Series of positive and negative terms – Absolute and conditional convergence.
UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS 9+3
Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes
– Envelopes - Evolute as envelope of normals.
UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES 9+3
Limits and Continuity – Partial derivatives – Total derivative – Differentiation of implicit functions –
Jacobian and properties – Taylor’s series for functions of two variables – Maxima and minima of
functions of two variables – Lagrange’s method of undetermined multipliers.
UNIT V MULTIPLE INTEGRALS 9+3
Double integrals in cartesian and polar coordinates – Change of order of integration – Area enclosed
by plane curves – Change of variables in double integrals – Area of a curved surface - Triple integrals
– Volume of Solids.
TOTAL (L:45+T:15): 60 PERIODS
OUTCOMES:
•This course equips students to have basic knowledge and understanding in one fields of
materials, integral and differential calculus.
TEXT BOOKS:
1. Bali N. P and Manish Goyal, “A Text book of Engineering Mathematics”, Eighth Edition, Laxmi
Publications Pvt Ltd., 2011.
2. Grewal. B.S, “Higher Engineering Mathematics”, 41
st Edition, Khanna Publications, Delhi,
2011.
REFERENCES:
1. Dass, H.K., and Er. Rajnish Verma,” Higher Engineering Mathematics”, S. Chand Private Ltd.,
2011.
2. Glyn James, “Advanced Modern Engineering Mathematics”, 3rd Edition, Pearson Education,
2012.
3. Peter V. O’Neil,” Advanced Engineering Mathematics”, 7th Edition, Cengage learning, 2012.
4. Ramana B.V, “Higher Engineering Mathematics”, Tata McGraw Hill Publishing
Company, New Delhi, 2008.
5. Sivarama Krishna Das P. and Rukmangadachari E., “Engineering Mathematics”, Volume I,
Second Edition, PEARSON Publishing, 2011.
OBJECTIVES:
•To enhance the fundamental knowledge in Physics and its applications relevant to various
streams of Engineering and Technology.
UNIT I CRYSTAL PHYSICS 9
Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice –
Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor
for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) -
Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques
(qualitative)
UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS 9
Elasticity- Hooke’s law - Relationship between three modulii of elasticity (qualitative) – stress -strain
diagram – Poisson’s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever
–Young’s modulus by uniform bending- I-shaped girders
Modes of heat transfer- thermal conductivity- Newton’s law of cooling - Linear heat flow – Lee’s disc
method – Radial heat flow – Rubber tube method – conduction through compound media (series and
parallel)
UNIT III QUANTUM PHYSICS 9
Black body radiation – Planck’s theory (derivation) – Deduction of Wien’s displacement law and
Rayleigh – Jeans’ Law from Planck’s theory – Compton effect. Theory and experimental verification –
Properties of Matter waves – G.P Thomson experiment -Schrodinger’s wave equation – Time
independent and time dependent equations – Physical significance of wave function – Particle in a
one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron
microscope.
UNIT IV ACOUSTICS AND ULTRASONICS 9
Classification of Sound- decibel- Weber–Fechner law – Sabine’s formula- derivation using growth and
decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings
and their remedies.
Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non
Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C –
scan displays, Medical applications - Sonogram
UNIT V PHOTONICS AND FIBRE OPTICS 9
Spontaneous and stimulated emission- Population inversion -Einstein’s A and B coefficients -
derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homojunction & heterojunction)-
Industrial and Medical Applications.
Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types
of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical
Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.
TOTAL: 45 PERIODS
OUTCOMES:
•The students will have knowledge on the basics of physics related to properties of matter,
optics, acoustics etc., and they will apply these fundamental principles to solve practical
problems related to materials used for engineering applications.
TEXT BOOKS:
1. Arumugam M. Engineering Physics. Anuradha publishers, 2010
2. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009
3. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.
REFERENCES:
1. Searls and Zemansky. University Physics, 2009
2. Mani P. Engineering Physics I. Dhanam Publications, 2011
3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
4. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011
5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011
6. Senthilkumar G. Engineering Physics I. VRB Publishers, 2011.
OBJECTIVES:
•To make the students conversant with basics of polymer chemistry.
•To make the student acquire sound knowledge of second law of thermodynamics and
second law based derivations of importance in engineering applications in all disciplines.
•To acquaint the student with concepts of important photophysical and photochemical
processes and spectroscopy.
•To develop an understanding of the basic concepts of phase rule and its applications to
single and two component systems and appreciate the purpose and significance of alloys.
•To acquaint the students with the basics of nano materials, their properties and
applications.
UNIT I POLYMER CHEMISTRY 9
Introduction: Classification of polymers – Natural and synthetic; Thermoplastic and Thermosetting.
Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free
Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg,
Tacticity, Molecular weight – weight average, number average and polydispersity index.
Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties
and uses of Nylon 6,6, and Epoxy resin.
UNIT II CHEMICAL THERMODYNAMICS 9
Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas,
reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free
energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of
spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell
relations – Van’t Hoff isotherm and isochore(problems).
UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY 9
Photochemistry: Laws of photochemistry - Grotthuss–Draper law, Stark–Einstein law and Lambert-
Beer Law. Quantum efficiency – determination- Photo processes - Internal Conversion, Intersystem
crossing, Fluorescence, Phosphorescence, Chemiluminescence and Photo-sensitization.
Spectroscopy: Electromagnetic spectrum - Absorption of radiation – Electronic, Vibrational and
rotational transitions. UV-visible and IR spectroscopy – principles, instrumentation (Block diagram
only).
UNIT IV PHASE RULE AND ALLOYS 9
Phase rule: Introduction, definition of terms with examples, One Component System- water system
- Reduced phase rule - Two Component Systems- classification – lead-silver system, zincmagnesium
system. Alloys: Introduction- Definition- Properties of alloys- Significance of alloying,
Functions and effect of alloying elements- Ferrous alloys- Nichrome and Stainless steel – heat
treatment of steel; Non-ferrous alloys – brass and bronze.
UNIT V NANOCHEMISTRY 9
Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent
properties. Nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis:
precipitation, thermolysis, hydrothermal, solvothermal, electrode position, chemical vapour
deposition, laser ablation; Properties and applications
TOTAL :45 PERIODS
OUTCOMES:
•The knowledge gained on polymer chemistry, thermodynamics. spectroscopy, phase rule
and nano materials will provide a strong platform to understand the concepts on these
subjects for further learning.
TEXT BOOKS:
1. Jain P.C. and Monica Jain, “Engineering Chemistry”, Dhanpat Rai Publishing Company (P)
Ltd., New Delhi, 2010
2. Kannan P., Ravikrishnan A., “Engineering Chemistry”, Sri Krishna Hi-tech Publishing
Company Pvt. Ltd. Chennai, 2009
REFERENCES:
1. Dara S.S, Umare S.S, “Engineering Chemistry”, S. Chand & Company Ltd., New Delhi
2010
2. Sivasankar B., “Engineering Chemistry”, Tata McGraw-Hill Publishing Company, Ltd., New
Delhi, 2008.
3. Gowariker V.R. , Viswanathan N.V. and JayadevSreedhar, “Polymer Science”, New Age
International P (Ltd.,), Chennai, 2006.
4. Ozin G. A. and Arsenault A. C., “Nanochemistry: A Chemical Approach to Nanomaterials”,
RSC Publishing, 2005.
OBJECTIVES:
The students should be made to:
•Learn the organization of a digital computer.
•Be exposed to the number systems.
•Learn to think logically and write pseudo code or draw flow charts for problems.
•Be exposed to the syntax of C.
•Be familiar with programming in C.
•Learn to use arrays, strings, functions, pointers, structures and unions in C.
UNIT I INTRODUCTION 8
Generation and Classification of Computers- Basic Organization of a Computer –Number System –
Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm –
Pseudo code – Flow Chart.
UNIT II C PROGRAMMING BASICS 10
Problem formulation – Problem Solving - Introduction to ‘ C’ programming –fundamentals – structure
of a ‘C’ program – compilation and linking processes – Constants, Variables – Data Types –
Expressions using operators in ‘C’ – Managing Input and Output operations – Decision Making and
Branching – Looping statements – solving simple scientific and statistical problems.
UNIT III ARRAYS AND STRINGS 9
Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String
operations – String Arrays. Simple programs- sorting- searching – matrix operations.
UNIT IV FUNCTIONS AND POINTERS 9
Function – definition of function – Declaration of function – Pass by value – Pass by reference –
Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays- Example
Problems.
UNIT V STRUCTURES AND UNIONS 9
Introduction – need for structure data type – structure definition – Structure declaration – Structure
within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor
directives.
TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
•Design C Programs for problems.
•Write and execute C programs for simple applications.
TEXTBOOKS:
1. Anita Goel and Ajay Mittal, “Computer Fundamentals and Programming in C”, Dorling
Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
2. Pradip Dey, Manas Ghosh, “Fundamentals of Computing and Programming in C”, First
Edition, Oxford University Press, 2009
3. Yashavant P. Kanetkar. “ Let Us C”, BPB Publications, 2011.
REFERENCES:
1. Byron S Gottfried, “Programming with C”, Schaum’s Outlines, Second Edition, Tata McGraw-
Hill, 2006.
2. Dromey R.G., “How to Solve it by Computer”, Pearson Education, Fourth Reprint, 2007.
3. Kernighan,B.W and Ritchie,D.M, “The C Programming language”, Second Edition, Pearson
Education, 2006.
OBJECTIVES:
•To develop in students, graphic skills for communication of concepts, ideas and design of
Engineering products.
•T o expose them to existing national standards related to technical drawings.
CONCEPTS AND CONVENTIONS (Not for Examination) 1
Importance of graphics in engineering applications – Use of drafting instruments – BIS
conventions and specifications – Size, layout and folding of drawing sheets – Lettering and
dimensioning.
UNIT I PLANE CURVES AND FREE HAND SKETCHING 5+9
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of
ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of
involutes of square and circle – Drawing of tangents and normal to the above curves, Scales:
Construction of Diagonal and Vernier scales.
Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three
Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of
objects
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 5+9
Orthographic projection- principles-Principal planes-First angle projection-projection of points.
Projection of straight lines (only First angle projections) inclined to both the principal planes -
Determination of true lengths and true inclinations by rotating line method and traces Projection of
planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object
method.
UNIT III PROJECTION OF SOLIDS 5+9
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is
inclined to one of the principal planes by rotating object method and auxiliary plane method.
UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF
SURFACES 5+9
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of
the principal planes and perpendicular to the other – obtaining true shape of section. Development of
lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of
lateral surfaces of solids with cut-outs and holes
UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6 + 9
Principles of isometric projection – isometric scale –Isometric projections of simple solids and
truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple
vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms,
pyramids and cylinders by visual ray method .
COMPUTER AIDED DRAFTING (Demonstration Only) 3
Introduction to drafting packages and demonstration of their use.
TOTAL: 75 PERIODS
OUTCOMES:
On Completion of the course the student will be able to
•perform free hand sketching of basic geometrical constructions and multiple views of
objects.
•do orthographic projection of lines and plane surfaces.
•draw projections and solids and development of surfaces.
•prepare isometric and perspective sections of simple solids.
•demonstrate computer aided drafting.
TEXT BOOK:
1. Bhatt N.D. and Panchal V.M., “Engineering Drawing”, Charotar Publishing House, 50th
Edition, 2010.
REFERENCES:
1. Gopalakrishna K.R., “Engineering Drawing” (Vol. I&II combined), Subhas Stores, Bangalore,
2007.
2. Luzzader, Warren.J. and Duff,John M., “Fundamentals of Engineering Drawing with an
introduction to Interactive Computer Graphics for Design and Production, Eastern Economy
Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
3. Shah M.B., and Rana B.C., “Engineering Drawing”, Pearson, 2nd Edition, 2009.
4. Venugopal K. and Prabhu Raja V., “Engineering Graphics”, New Age International (P)
Limited, 2008.
5. Natrajan K.V., “A text book of Engineering Graphics”, Dhanalakshmi Publishers,
Chennai, 2009.
6. Basant Agarwal and Agarwal C.M., “Engineering Drawing”, Tata McGraw Hill Publishing
Company Limited, New Delhi, 2008.
Publication of Bureau of Indian Standards:
1. IS 10711 – 2001: Technical products Documentation – Size and lay out of drawing
sheets.
2. IS 9609 (Parts 0 & 1) – 2001: Technical products Documentation – Lettering.
3. IS 10714 (Part 20) – 2001 & SP 46 – 2003: Lines for technical drawings.
4. IS 11669 – 1986 & SP 46 – 2003: Dimensioning of Technical Drawings.
5. IS 15021 (Parts 1 to 4) – 2001: Technical drawings – Projection Methods.
Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The
students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day
OBJECTIVES:
The student should be made to:
•Be familiar with the use of Office software.
•Be exposed to presentation and visualization tools.
•Be exposed to problem solving techniques and flow charts.
•Be familiar with programming in C.
•Learn to use Arrays, strings, functions, structures and unions.
LIST OF EXPERIMENTS:
1. Search, generate, manipulate data using MS office/ Open Office
2. Presentation and Visualization – graphs, charts, 2D, 3D
3. Problem formulation, Problem Solving and Flowcharts
4. C Programming using Simple statements and expressions
5. Scientific problem solving using decision making and looping.
6. Simple programming for one dimensional and two dimensional arrays.
7. Solving problems using String functions
8. Programs with user defined functions – Includes Parameter Passing
9. Program using Recursive Function and conversion from given program to flow chart.
10. Program using structures and unions.
TOTAL : 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
•Apply good programming design methods for program development.
•Design and implement C programs for simple applications.
•Develop recursive programs.
LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:
Standalone desktops with C compiler 30 Nos.
(or)
Server with C compiler supporting 30 terminals or more.
OBJECTIVES:
•To provide exposure to the students with hands on experience on various basic engineering
practices in Civil, Mechanical, Electrical and Electronics Engineering.
GROUP A (CIVIL & MECHANICAL)
I CIVIL ENGINEERING PRACTICE 9
Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety
aspects.
Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers,
elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
Basic pipe connections – Mixed pipe material connection – Pipe connections with different
joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.
Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
Wood work, joints by sawing, planing and cutting.
II MECHANICAL ENGINEERING PRACTICE 13
Welding:
(a) Preparation of arc welding of butt joints, lap joints and tee joints.
(b) Gas welding practice
Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice
Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays, funnels, etc.
(c) Different type of joints.
Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner
Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example –
Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and vee – fitting models.
GROUP B (ELECTRICAL & ELECTRONICS)
III ELECTRICAL ENGINEERING PRACTICE 10
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
4. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit.
5. Measurement of energy using single phase energy meter.
6. Measurement of resistance to earth of an electrical equipment.
IV ELECTRONICS ENGINEERING PRACTICE 13
1. Study of Electronic components and equipments – Resistor, colour coding measurement
of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EOR and NOT.
3. Generation of Clock Signal.
4. Soldering practice – Components Devices and Circuits – Using general purpose
PCB.
5. Measurement of ripple factor of HWR and FWR.
TOTAL: 45 PERIODS
OUTCOMES:
•ability to fabricate carpentry components and pipe connections including plumbing works.
•ability to use welding equipments to join the structures.
•ability to fabricate electrical and electronics circuits.
REFERENCES:
1. Jeyachandran K., Natarajan S. & Balasubramanian S., “A Primer on Engineering
Practices Laboratory”, Anuradha Publications, 2007.
2. Jeyapoovan T., Saravanapandian M. & Pranitha S., “Engineering Practices Lab Manual”,
Vikas Puplishing House Pvt.Ltd, 2006.
3. Bawa H.S., “Workshop Practice”, Tata McGraw – Hill Publishing Company Limited, 2007.
4. Rajendra Prasad A. & Sarma P.M.M.S., “Workshop Practice”, Sree Sai Publication, 2002.
5. Kannaiah P. & Narayana K.L., “Manual on Workshop Practice”, Scitech Publications, 1999.
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
CIVIL
1. Assorted components for plumbing consisting of metallic pipes,
plastic pipes, flexible pipes, couplings, unions, elbows, plugs and
other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
3. Standard woodworking tools 15 Sets.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
(b) Demolition Hammer 2 Nos
(c) Circular Saw 2 Nos
(d) Planer 2 Nos
(e) Hand Drilling Machine 2 Nos
(f) Jigsaw 2 Nos
MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer,
wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other
welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.
ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
(b) Digital Live-wire detector 2 Nos
ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
4. Multimeters 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power
supply
PHYSICS LABORATORY – I
OBJECTIVES:
•To introduce different experiments to test basic understanding of physics concepts applied in
optics, thermal physics and properties of matter.
LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. (a) Determination of Wavelength, and particle size using Laser
(b) Determination of acceptance angle in an optical fiber.
2. Determination of velocity of sound and compressibility of liquid – Ultrasonic
interferometer.
3. Determination of wavelength of mercury spectrum – spectrometer grating
4. Determination of thermal conductivity of a bad conductor – Lee’s Disc method.
5. Determination of Young’s modulus by Non uniform bending method
6. Determination of specific resistance of a given coil of wire – Carey Foster’s Bridge

For complete syllabus here I am uploading the PDF file of it;
Attached Files Available for Download
File Type: pdf Anna University BE Mechanical Engineering Syllabus.pdf (622.4 KB, 20 views)
__________________
Answered By StudyChaCha Member
Reply With Quote
Reply




All times are GMT +6. The time now is 02:25 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
Search Engine Friendly URLs by vBSEO 3.6.0 PL2

1 2 3 4 5 6 7 8