#1
 
 
North Maharashtra University PHD Entrance Test Form
I want to give the entrance exam of North Maharashtra University PHD so I want to get the application form so can you provide me that

#2
 
 
Re: North Maharashtra University PHD Entrance Test Form
As you want to get the application form of entrance exam of North Maharashtra University PHD so here is the information of the same for you: I want to tell you that the dates for this year have been passed Date of this year entrance exam: January 2930 2013 So you have to wait till next year in order to give and the get the entrance exam and the application form Ph. D. ENTRANCE TEST Syllabus for PAPERI I. Research Aptitude : Research: Meaning, characteristics and types; Steps of research; Methods of research; Research Ethics; Paper, article, workshop, seminar, conference and symposium; Thesis writing: its characteristics and format. II. Teaching Aptitude : Teaching : Nature, objectives, characteristics and basic requirements; Learners characteristics; Factors affecting teaching; Methods of teaching; Teaching aids; Evaluation systems. III. Reading Comprehension : A passage to be set with questions to be answered. IV. General Awareness about Basic Science : Basic Science up to the level of SSC. V. Mathematical Reasoning: Number series; letter series; codes; Relationships; classification. VI. Logical Reasoning : Understanding the structure of arguments; Evaluating and distinguishing deductive and inductive reasoning; Verbal analogies : Word analogyApplied analogy; Verbal classification; Reasoning Logical Diagrams : Simple diagrammatic relationship, multidiagrammatic relationship; Venn diagram; Analytical Reasoning. VII. Data Interpretation : Sources, acquisition and interpretation of data; Quantitative and qualitative data; Graphical representation and mapping of data. VIII. Information and Communication Technology (ICT) : ICT : meaning, advantages, disadvantages and uses; General abbreviations and terminology; Basics of internet and emailing. IX. Environment Awareness : People and environment interaction; Sources of pollution; Pollutants and their impact on human life, exploitation of natural and energy resources; Natural hazards and mitigation. X. General Awareness about Higher Education System : Structure of the institutions for higher learning and research in India; formal and distance education; professional/technical and general education; value education; governance, polity and administration; concept, institutions and their interactions. Physics 1) Mathematical Methods of Physics Dimensional analysis; Vector algebra and vector calculus; Linear algebra, matrices, eigenvalue problems; Linear differential equations; Special functions (Hermite, Bessel, Laguerre and Legendre); Fourier series, Fourier and Laplace transforms; Elements of complex analysis; Laurent seriespoles, residues and evaluation of integrals; Elementary ideas about tensors; Elements of computational techniques: roots of functions, interpolation, extrapolation, integration by trapezoid and Simpson’s rule, Elementary probability theory, random variables, binomial, Poisson and normal distributions. 2) Classical Mechanics Newton’s laws; Phase space dynamics, stability analysis; Centralforce motion; Twobody collisions, scattering in laboratory and centreofmass frames; Rigid body dynamics, moment of inertia tensor, noninertial frames and pseudoforces; Variational principles, Lagrangian and Hamiltonian formalisms and equations of motion; Poisson brackets and canonical transformations; Symmetry, invariance and conservation laws, cyclic coordinates; Periodic motion, small oscillations and normal modes; Special theory of relativity, Lorentz transformations, relativistic kinematics and massenergy equivalence. 3) Electromagnetic Theory Electrostatics : Gauss’ Las and its applications; Laplace and Poisson equations, boundary value problems; Magnetostatics : BiotSavart law, Ampere’s theorem, electromagnetic induction; Maxwell’s equations in free space and linear isotropic media; boundary conditions on fields at interfaces; Scalar and vector potentials; Gauge invariance; Electromagnetic waves in free space, dielectrics, and conductors; Reflection and refraction, polarization, Fresnel’s Law, interference, coherence, and diffraction; Lorentz invariance of Maxwell’s equations. 4) Quantum Mechanics Waveparticle duality; Wave functions in coordinate and momentum representations; Commutators and Heisenberg’s uncertainty principle; Matrix representation; Dirac’s bra and ket notation; Schroedinger equation (timedependent and timeindependent); Eigenvalue problems such as particleinabox, harmonic, oscillator, etc/; Tunneling through a barrier; Motion in a central potential; Orbital angular momentum, Angular momentum algebra; spin; Addition of angular momenta; Hydrogen atom, Time independent perturbation theory and applications; Variational method; WKB approximation. Time dependent perturbation theory and Fermi’s Golden Rule; Selection rules; Identical particles, Pauli’s exclusion principle, spin statistics connection. 5) Thermodynamic and Statistical Physics Laws of thermodynamics and their consequences; Thermodynamic potentials, Maxwell relations; Chemical potential, phase equilibria; Phase space, micro and macrostates; Microcanonical, canonical and grandcanonical ensembles and partition functions; Free Energy and connection with thermodynamic quantities; Firstaid secondorder phase transitions; Classical and quantum statistics, ideal Fermi and Bose gases; Principle of detailed balance; Blackbody radiation and Planck’s distribution law; BoseEinstein condensation. 6) Electronics Semiconductor device physics, including diodes, junctions, transistors, field effect devices, homo and heterojunction devices, device structure, device characteristics, frequency dependence and applications; Optoelectronic devices, including solar cells, 210 photodetectors and LEDs; Highfrequency devices, including generators, and detectors; Operational amplifiers and their applications; Digital techniques and applications (registers, counters, comparators and similar circuits); A/D and D/A converters. 7) Experimental Techniques and data analysis Data interpretation and analysis; Precision and accuracy, error analysis, propagation of errors, least squares fitting, linear and nonlinear curve fitting, chisquare test; Transducers (temperature, pressure/vacuum, magnetic field, vibration, optical, and particle detectors), measurement and control; Signal conditioning and recovery, impedance matching, amplification (Opamp based, instrumentation amp, feedback), filtering and noise reduction, shielding and grounding; Fourier transforms. 8) Atomic & Molecular Physics Quantum states of an electron in an atom; Electron spin; SternGerlach experiment; Spectrum of Hydrogen, helium and alkali atoms; Relativistic corrections for energy levels of hydrogen; Hyperfine structure and isotopic shift; width of spectral lines; LS &JJ coupling; Zeeman, Paschen Back & Stark effect; Xray spectroscopy; Electron spin resonance, Nuclear magnetic resonance, chemical shift; Rotational, vibrational, electronic, and Raman spectra and diatomic molecules; Frank – Condon principle and selection rules; Spontaneous and stimulated emission, Einstein A & B coefficients; Laser, optical pumping, population inversion, rate equation. 9) Condensed Matter Physics – Bravais lattices, Reciprocal lattice, diffraction and the structure factor; Bonding of solids, Elastic properties, phonons, lattice specific heat; Free electron theory and electronic specific heat; Response and relaxation phenomena; Drude model of electrical and thermal conductivity; Hall effect and thermoelectric power; Diamagnetism, paramagnetism, and ferromagnetism; Electron motion in a periodic potential, band theory of metals, insulators and semiconductors; Superconductivity, type – I and type – II superconductors, Josephson junctions. 10) Nuclear and Particle Physics – Basic nuclear properties; size, shape, charge distribution, spin and parity; Binding energy, semiempirical mass formula; Liquid drop model; Fission and fusion; Nature of the nuclear force, form of nucleonnucleon potential; Chargeindependence and chargesymmetry of nuclear forces; Isospin; Deuteron problem; Evidence of shell structure, singleparticle shell model, its validity and limitations; Rotational spectra; Elementary ideas of alpha, beta and gamma decays and their selection rules; Nuclear reactions, reaction mechanisms, compound nuclei and direct reactions; Classification of fundamental forces; Elementary particles (quarks, baryons, mesons, leptons); Spin and parity assignments, isospin, strangeness, basics of LHC. So for your reference I am uploading a PDF file which contains the syllabus of entrance exam
__________________ Answered By StudyChaCha Member Last edited by Sashwat; February 12th, 2014 at 11:54 AM. 
#3
 
 
Re: North Maharashtra University PHD Entrance Test Form What is the next date for PHD Entrance Test for the year 2013 2014

#4
 
 
Re: North Maharashtra University PHD Entrance Test Form
To get the North Maharashtra University PHD Entrance Test Form you need to log in the official website of the university, here I am telling you the procedure of doing log in: • First of all go to the official website of the North Maharashtra University. • At this page, click on the “academics” and then “phd” option. • You will refer to a new page, click on the “Online Application ”. • Again you will refer to a new page, this is the page from where you can do log in by putting your username and password in to the text box and then click on the log in Option. Contact details: North Maharashtra University North Mahatashtra University Road, Off Dhule Highway, Umavi Nagar, Jalgaon, MH 425001 0257 225 7346
__________________ Answered By StudyChaCha Member 
#6
 
 
Re: North Maharashtra University PHD Entrance Test Form
[QUOTE=iropehite417;181071]I want to give the entrance exam of North Maharashtra University PHD so I want to get the application form so can you provide me that ...and i want to all details about PET exam..n Ph.D
