2019-2020-2021 StudyChaCha
 User Name Remember Me? Password

#1
June 6th, 2016, 06:56 PM
 Unregistered Guest
IIT JEE Sample Paper In Hindi

Hi buddy here I have come to get IIT JEE Sample Paper In Hindi for math subject along with its syllabus , will you plz provide me ??

#2
June 6th, 2016, 07:46 PM
 Super Moderator Join Date: Nov 2011
Re: IIT JEE Sample Paper In Hindi

As you are asking for IIT JEE Sample Paper In Hindi for math subject along with its syllabus, so on your demand I am providing same for you:

JEE Mathematics Syllabus
Algebra

Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.

Logarithms and their properties.

Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients.

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Addition and multiplication rules of probability, conditional probability, independence of events, computation of probability of events using permutations and combinations.

Trigonometry

Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.

Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).

Analytical geometry

Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.

Equation of a straight line in various forms, angle between two lines, distance of a point from a line. Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines, centroid, orthocentre, incentre and circumcentre of a triangle.

Equation of a circle in various forms, equations of tangent, normal and chord.

Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.

Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.

Locus Problems.

Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.

Differential calculus

Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.

Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, l'Hospital rule of evaluation of limits of functions.

Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.

Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.

Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, applications of Rolle's Theorem and Lagrange's Mean Value Theorem.

Integral calculus

Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, application of the Fundamental Theorem of Integral Calculus.

Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.

Formation of ordinary differential equations, solution of homogeneous differential equations, variables separable method, linear first order differential equations.

Vectors

Addition of vectors, scalar multiplication, scalar products, dot and cross products, scalar triple products and their geometrical interpretations.
Attached Files Available for Download
 IIT JEE Sample Paper.pdf (414.4 KB, 4 views)
__________________
Answered By StudyChaCha Member

Reply to this Question / Ask Another Question
 Your Username: Click here to log in

Message:
Options

 Forum Jump StudyChaCha Discussion Forum     General Topics     Exams     MBA / Business Schools     Study Abroad and Immigration Consultancy     Career and Jobs Questions by Topics     Medicine and Health     Management

All times are GMT +6.5. The time now is 04:28 AM.

 -- Default Style -- Default vBulletin -- Lightweight MBA Discussion - Job Discussion - Contact Us - StudyChaCha - Blog Archives - Forum Archive - Partners : Management Forum | EduVark Top

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, vBulletin Solutions, Inc.
Search Engine Friendly URLs by vBSEO 3.6.0 PL2