Go Back   2018-2019 StudyChaCha > StudyChaCha Discussion Forum > General Topics




  #1  
Old June 4th, 2014, 02:45 PM
Unregistered
Guest
 
Posts: n/a
Default CSIR UGC syllabus of Mathematics

I want to give the exam of CSIR UGC and for that I want to get the syllabus of Mathematical Sciences of exam of CSIR UGC so can you provide me that?
Reply With Quote Quick reply to this message
Other Discussions related to this topic
Thread
IIT JEE syllabus Mathematics
GATE Mathematics Syllabus
BSC Hons Mathematics Syllabus DU
CSIR UGC Mathematics Solved Paper
How should Prepare for CSIR NET Mathematics
IIT JAM Syllabus for Mathematics (MA)
CSIR UGC Net Syllabus of Mathematics
Syllabus Msc mathematics in BHU
B.Sc Mathematics syllabus
Mathematics Coaching Centre for CSIR NET
CSIR UGC Net Question Papers Mathematics
Syllabus for ISRO JRF in Mathematics
Mathematics Syllabus For M .Sc OU
BTECH CSE CSIR-NET Mathematics
CSIR UGC NET exam Question paper for Mathematics
Is Coaching required for CSIR NET Mathematics
IIT JEE Mathematics Syllabus
IIT JAM Mathematics Syllabus
B Sc Mathematics Syllabus






  #2  
Old June 5th, 2014, 01:38 PM
Super Moderator
 
Join Date: Nov 2011
Posts: 31,679
Default Re: CSIR UGC syllabus of Mathematics

As you want to get the syllabus of Mathematical Sciences of exam of CSIR UGC so here is the information of the same for you:

Syllabus of Mathematical Sciences of exam of CSIR UGC

CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship
and Lecturer-ship
COMMON SYLLABUS FOR PART ‘B’ AND ‘C’
MATHEMATICAL SCIENCES
UNIT – 1
Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a
complete ordered field, Archimedean property, supremum, infimum.
Sequences and series, convergence, limsup, liminf.
Bolzano Weierstrass theorem, Heine Borel theorem.
Continuity, uniform continuity, differentiability, mean value theorem.
Sequences and series of functions, uniform convergence.
Riemann sums and Riemann integral, Improper Integrals.
Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure,
Lebesgue integral.
Functions of several variables, directional derivative, partial derivative, derivative as a linear
transformation, inverse and implicit function theorems.
Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions
as examples.
Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear
transformations.
Algebra of matrices, rank and determinant of matrices, linear equations.
Eigenvalues and eigenvectors, Cayley-Hamilton theorem.
Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms,
triangular forms, Jordan forms.
Inner product spaces, orthonormal basis.
Quadratic forms, reduction and classification of quadratic forms
UNIT – 2
Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, power series,
transcendental functions such as exponential, trigonometric and hyperbolic functions.
Analytic functions, Cauchy-Riemann equations.
Contour integral, Cauchy’s theorem, Cauchy’s integral formula, Liouville’s theorem, Maximum
modulus principle, Schwarz lemma, Open mapping theorem.
Taylor series, Laurent series, calculus of residues.
Conformal mappings, Mobius transformations.
Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle,
derangements.
Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem,
Euler’s Ø- function, primitive roots.
Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation
groups, Cayley’s theorem, class equations, Sylow theorems.
Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal
domain, Euclidean domain.
Polynomial rings and irreducibility criteria.
Fields, finite fields, field extensions, Galois Theory.
Topology: basis, dense sets, subspace and product topology, separation axioms, connectedness and
compactness.
UNIT – 3
Ordinary Differential Equations (ODEs):
Existence and uniqueness of solutions of initial value problems for first order ordinary differential
equations, singular solutions of first order ODEs, system of first order ODEs.
General theory of homogenous and non-homogeneous linear ODEs, variation of parameters,
Sturm-Liouville boundary value problem, Green’s function.
Partial Differential Equations (PDEs):
Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs.
Classification of second order PDEs, General solution of higher order PDEs with constant
coefficients, Method of separation of variables for Laplace, Heat and Wave equations.
Numerical Analysis :
Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate
of convergence, Solution of systems of linear algebraic equations using Gauss elimination and
Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical
differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and
Runge-Kutta methods.
Calculus of Variations:
Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema.
Variational methods for boundary value problems in ordinary and partial differential equations.
Linear Integral Equations:
Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with
separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel.
Classical Mechanics:
Generalized coordinates, Lagrange’s equations, Hamilton’s canonical equations, Hamilton’s
principle and principle of least action, Two-dimensional motion of rigid bodies, Euler’s dynamical
equations for the motion of a rigid body about an axis, theory of small oscillations.
UNIT – 4
Descriptive statistics, exploratory data analysis
Sample space, discrete probability, independent events, Bayes theorem. Random variables and
distribution functions (univariate and multivariate); expectation and moments. Independent random
variables, marginal and conditional distributions. Characteristic functions. Probability inequalities
(Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, Central
Limit theorems (i.i.d. case).
Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step
transition probabilities, stationary distribution, Poisson and birth-and-death processes.
Standard discrete and continuous univariate distributions. sampling distributions, standard errors and
asymptotic distributions, distribution of order statistics and range.
Methods of estimation, properties of estimators, confidence intervals. Tests of hypotheses: most powerful
and uniformly most powerful tests, likelihood ratio tests. Analysis of discrete data and chi-square test of
goodness of fit. Large sample tests.
Simple nonparametric tests for one and two sample problems, rank correlation and test for independence.
Elementary Bayesian inference.
Gauss-Markov models, estimability of parameters, best linear unbiased estimators, confidence intervals,
tests for linear hypotheses. Analysis of variance and covariance. Fixed, random and mixed effects models.
Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression.
Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic
forms. Inference for parameters, partial and multiple correlation coefficients and related tests. Data
reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical
correlation.
Simple random sampling, stratified sampling and systematic sampling. Probability proportional to size
sampling. Ratio and regression methods.
Completely randomized designs, randomized block designs and Latin-square designs. Connectedness and
orthogonality of block designs, BIBD. 2K factorial experiments: confounding and construction.
Hazard function and failure rates, censoring and life testing, series and parallel systems.
Linear programming problem, simplex methods, duality. Elementary queuing and inventory models.
Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C,
M/M/C with limited waiting space, M/G/1.
All students are expected to answer questions from Unit I. Students in mathematics
are expected to answer additional question from Unit II and III. Students with in
statistics are expected to answer additional question from Unit IV.

Contact Details:
University Grants Commission New Delhi
Bahadur Shah Zafar Marg,
Balmiki Basti,
Vikram Nagar,
New Delhi,
Delhi 110002 ‎
093 33 778791 ‎
India

Map Location:
__________________
Answered By StudyChaCha Member
Reply With Quote Quick reply to this message
Our Latest Videos
Sponsored Links






















Reply


Reply to this Question / Ask Another Question
Your Username: Click here to log in

Message:
Options

Forum Jump


All times are GMT +6.5. The time now is 03:00 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2018, vBulletin Solutions Inc.
Search Engine Friendly URLs by vBSEO 3.6.0 PL2

1 2 3 4 5 6 7 8 9