Go Back   2020-2021 StudyChaCha > StudyChaCha Discussion Forum > General Topics





  #2  
Old June 2nd, 2014, 04:28 PM
Super Moderator
 
Join Date: May 2011
Default Re: Amrita Engineering Entrance Exam syllabus

As you want to get the syllabus of Amrita Engineering Entrance Exam so here is the information of the same for you:

Some content of the file has been given here:

MATHEMATICS
a. Complex Numbers
Complex numbers in the form a+ib and their representation in a plane. Argand diagram. Algebra of complex
numbers, Modulus and argument (or amplitude) of a complex number, square root of a complex number.
Cube roots of unity, triangle inequality.
b. Linear Inequalities
Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the
number line.
c. Permutations and Combinations
Fundamental principle of counting; Permutation as an arrangement and combination as selection, Meaning
of P(n,r)and C(n,r).Simple applications.
d. Binomial Theorem
Binomial theorem for positive integral indices. Pascal’s triangle.
General and middle terms in binomial expansions, simple applications.
e. Sequences and Series
Arithmetic, Geometric and Harmonic progressions. Insertion of Arithmetic, Geometric and Harmonic means
between two given numbers. Relation between A.M., G.M. and H.M. Special series n, n2, n3. Arithmetico-
Geometric Series, Exponential and Logarithmic Series.
f. Matrices and Determinants
Determinants and matrices of order two and three, Properties of determinants. Evaluation of determinants.
Addition and multiplication of matrices, adjoint and inverse of matrix. Solution of simultaneous linear equa–
tions using determinants .
g. Quadratic Equations
Quadratic equations in real and complex number system and their solutions. Relation between roots and
co-efficients, Nature of roots, formation of quadratic equations with given roots;
h. Relations and Functions
Definition of a relation. Domain, codomain and range of a relation. Function as special kind of relation and
their domain, codomain and range. Real valued function of a real variable. Constant, identity, polynomial,
rational. Modulus, signum and greatest integer functions. Sum. Difference, product and quotient of func–
tions. Types of relations: refelexive, symmetric, transitive and equivalence relations. One to one and onto
functions.Composite functions, inverse of a function.
i. Trigonometry
Trigonometrical identities and equations. Inverse trigonometric functions and their properties. Properties of
triangles, including centroid, incentre, circumcentre and orthocentre, solution of triangles. Heights and
distances.

j. Measures of Central Tendency and Dispersion
Calculation of Mean, Median and Mode of grouped and ungrouped data. Calculation of standard deviation,
variance and mean deviation for grouped and ungrouped data.
k. Probability
Probability of an event, addition and multiplication theorems of probability and their applications; Conditional
probability; Bayes’ theorem, Probability distribution of a random variate; Binomial and Poisson distributions
and their properties.
l. Differential Calculus
Polynomials, rational, trigonometric, logarithmic and exponential functions. Graphs of simple functions.
Limits, Continuity; differentiation of the sum, difference, product and quotient of two functions. Differentiation
of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; deriva–
tives of order upto two. Applications of derivatives: Maxima and Minima of functions one variable, tangents
and normals, Rolle’s and Langrage’s Mean Value Theorems.
m. Integral Calculus
Integral as an anti derivative. Fundamental integrals involving algebraic, trigonometric, exponential and
logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigono–
metric identities. Integral as a limit of sum. Properties of definite integrals. Evaluation of definite integral;
Determining areas of the regions bounded by simple curves.
n. Differential Equations
Ordinary differential equations, their order and degree. Formation of differential equation. Solutions of differ–
ential equations by the method of separation of variables. Solution of Homogeneous and linear differential
equations, and those of type d2y/dx2= f(x).
o. Two Dimensional Geometry
Review of Cartesian system of rectangular co-ordinates in a plane, distance formula, area of triangle,
condition for the collinearity of three points, slope of a line, parallel and perpendicular lines, intercepts of a
line on the coordinate axes.
p. The straight line and pair of straight lines
Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concur–
rence of three lines, distance of a point from a line .Equations of internal and external bisectors of angles
between two lines, equation of family lines passing through the point of intersection of two lines, homoge–
neous equation of second degree in x and y, angle between pair of lines through the origin, combined
equation of the bisectors of the angles between a pair of lines, condition for the general second degree
equation to represent a pair of lines, point of intersections and angles between two lines.
q. Circles and Family of Circles
Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation
of a circle in the parametric form, equation of a circle when the end points of a diameter are given, points
of intersection of a line and circle with the centre at the origin and condition for a line to be tangent, equation
of a family of circles through the intersection of two circles, condition for two intersecting circles to be
orthogonal.
r. Conic Sections
Sections of cones, equations of conic sections ( parabola, ellipse and hyperbola) in standard forms, condi–
tions for y = mx+c to be a tangent and point(s) of tangency.

s. Vector Algebra
Vector and scalars, addition of two vectors, components of a vector in two dimensions and three dimen–
sional space, scalar and vector products, scalar and vector triple product. Application of vectors to plane
geometry.
t. Three Dimensional Geometry
Distance between two points. Direction cosines of a line joining two points. Cartesian and vector equation
of a line. Coplanar and skew lines. Shortest distance between two lines.Cartesian and vector equation of a
plane. Angle between (i) two lines (ii) two planes (iii) a line and a plane Distance of a point from a plane.

PHYSICS
a. UNITS AND DIMENSIONS
Units for measurement, system of units, SI, fundamental and derived units, dimensions and their applications.
b. MECHANICS
Motion in straight line, uniform and non-uniform motion, uniformly accelerated motion and its applications
Scalars and Vectors, and their properties; resolution of vectors, scalar and vector products; uniform circular
motion and its applications, projectile motion Newton’s Laws of motion; conservation of linear momentum
and its applications, laws of friction, Concept of work, energy and power; energy-kinetic and potential;
conservation of energy; different forms of energy. Elastic collisions in one and two dimensions.
Center of mass of a many particle system; center of mass of a rigid body, rotational motion and torque.
Angular momentum and its conservation. Moments of inertia, parallel and perpendicular axes theorem,
moment of inertia for a thin rod, ring, disc and sphere.
Gravitation: Acceleration due to gravity and its properties. One and two dimensional motion under gravity.
Universal law of gravitation, planetary motion, Kepler’s laws, artificial satellite-geostationary satellite, gravitational
potential energy near the surface of earth, gravitational potential and escape velocity.
c. SOLIDS AND FLUIDS
Solids: Elastic properties, Hooke’s law, Young’s modulus, bulk modulus, modulus of rigidity.Liquids: Cohesion
and adhesion; surface energy and surface tension; flow of fluids, Bernoulli’s theorem and its applications;
viscosity, Stoke’s Law, terminal velocity.
(i) OSCILLATIONS AND WAVES
Periodic motion, simple harmonic motion and its equation, oscillations of a spring and simple pendulum.
Wave motion, properties of waves, longitudinal and transverse waves, superposition of waves, Progressive
and standing waves. Free and forced oscillations, resonance, vibration of strings and air columns, beats,
Doppler effect.
(ii) HEAT AND THERMODYNAMICS
Thermal expansion of solids, liquids and gases and their specific heats, relationship between Cp and Cv for
gases, first and second laws of thermodynamics , Carnot cycle, efficiency of heat engines. Transference of
heat; thermal conductivity; black body radiations, Kirchoff’s law, Wein’s Law, Stefan’s law of radiation and
Newton’s law of cooling.
(iii) ELECTROSTATICS,CURRENT ELECTRICITY AND MAGNETOSTATICS
Coloumb’s law, dielectric constant, electric field, lines of force, field due to dipole , electric flux, Gauss’s

theorem and its applications; electric potential, potential due to a point charge; conductors and insulators,
distribution of charge on conductors; capacitance, parallel plate capacitor, combination of capacitors, energy
stored in a capacitor.
Electric current : Cells-primary and secondary, grouping of cells; resistance and specific resistivity and its
temperature dependence. Ohm’s law, Kirchoff’s Law. Series and parallel circuits; Wheatstone’s Bridge and
potentiometer with their applications.
Heating effects of current, electric power, concept of thermoelectricity-Seebeck effect and thermocouple;
chemical effect of current- Faraday’s laws of electrolysis.
Magnetic effects: Oersted’s experiment, Biot Savert’s law, magnetic field due to straight wire, circular loop
and solenoid, force on a moving charge in a uniform magnetic field(Lorentz force),forces and torques on a
current carrying conductor in a magnetic field, force between current carrying wires, moving coil galvanometer
and conversion to ammeter and voltmeter.
Magnetostatics: Bar magnet, magnetic field, lines of force, torque on a bar magnet in a magnetic field,
earth’s magnetic field; para, dia and ferro magnetism, magnetic induction, magnetic susceptibility.
d. ELECTROMAGNETIC INDUCTION AND ELECTROMAGNETIC WAVES
Induced e.m.f., Faraday’s law, Lenz’s law, self and mutual inductance; alternating currents, impedance and
reactance, power in ac; circuits with L C and R series combination, resonant circuits, transformer and AC
generator.
Electromagnetic waves and their characteristics; electromagnetic spectrum from gamma to radio waves.
e. RAY AND WAVE OPTICS
Reflection and refraction of light at plane and curved surfaces, total internal reflection; optical fiber; deviation
and dispersion of light by a prism; lens formula, magnification and resolving power; microscope and
telescope, Wave nature of light, interference, Young’s double experiment; thin films, Newton’s rings.
Diffraction: diffraction due to a single slit; diffraction grating, polarization and applications.
f. MODERN PHYSICS
Dual nature of Radiation - De Broglie relation, photoelectric effect, Alpha particle scattering experiment,
atomic masses, size of the nucleus; radioactivity, alpha, beta and gamma particles/rays. Radioactive decay
law, half life and mean life of radio active nuclei; Nuclear binding energy, mass energy relationship, nuclear
fission and nuclear fusion.
Energy bands in solids, conductors, insulators and semiconductors, pn junction, diode, diode as a rectifier,
transistor action, transistor as an amplifier.

CHEMISTRY
a. BASIC CONCEPTS
Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and
molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.
b. ATOMIC STRUCTURE, CHEMICAL BONDING AND MOLECULAR STRUCTURE
Bohr’s model, de Broglie’s and Heisenberg’s principles, Quantum mechanical model, Orbital concept and
filling up of electrons; Bond formation and bond parameters; Valence bond and molecular orbital theory;
VSEPR theory; Hybridization involving s, p and d orbital; Hydrogen bond.

c. EQUILIBRIUM AND THERMODYNAMICS
Law of chemical equilibrium and Equilibrium Constant; Homogeneous and Heterogeneous equilibria;
LeChatelier’s principle, Ionic equilibrium; Acids, Bases, Salts and Buffers; Solubility product;
Thermodynamic state; Enthalpy, Entropy and Gibb’s free energy; Heats of reactions; Spontaneous and nonspontaneous
processes.
d. ELECTROCHEMISTRY, KINETICS AND SURFACE CHEMISTRY
Specific, molar and equivalent conductance of weak and strong electrolytes; Kohlrausch law; Electrochemi
cal cells and Nernst equation; batteries, fuel cells and corrosion
Rate of a reaction and factors affecting the rate: Rate constant, order and molecularity, collision theory.
Physisorption and chemisorptions; colloids and emulsions; homogeneous and heterogeneous catalysis.

e. SOLID STATE AND SOLUTIONS
Molecular, ionic, covalent and metallic solids; amorphous and crystalline solids; crystal lattices and Unit
cells; packing efficiency and imperfections; electrical and magnetic properties. Normality, molarity and
molality of solutions, vapour pressure of liquid solutions; ideal and non-ideal solutions, colligative properties;
abnormality.

f. HYDROGEN
Position of hydrogen in the periodic table; dihydrogen and hydrides- preparation and properties; water,
hydrogen peroxide and heavy water; hydrogen as a fuel.

g. S - BLOCK ELEMENTS
Group 1 and 2 Alkali and Alkaline earth elements; general characteristics of compounds of the elements;
anomalous behavior of the first element; preparation and properties of compounds like sodium and calcium
carbonates, sodium chloride, sodium hydroxide; biological importance of sodium, potassium and calcium.

h. P - BLOCK ELEMENTS
Groups 13 to 17 elements: General aspects like electronic configuration, occurrence, oxidation states,
trends in physical and chemical properties of all the families of elements; compounds of boron like borax,
boron hydrides and allotropes of carbon; compounds of nitrogen and phosphorus, oxygen and sulphur;
oxides and oxyacids of halogens.

i. D, F - BLOCK ELEMENTS
Electronic configuration and general characteristics of transition metals; ionization enthalpy, ionic radii,
oxidations states and magnetic properties; interstitial compounds and alloy formation; lanthanides and
actinoids and their applications.

j. CO-ORDINATION COMPOUNDS
Werner’s theory and IUPAC nomenclature of coordination compounds; coordination number and isomer–
ism; Bonding in coordination compounds and metal carbonyls and stability; application in analytical meth–
ods, extraction of metals and biological systems.

k. BASIC ORGANIC CHEMISTRY AND TECHNIQUES
Tetravalence of carbon and shapes or organic compounds; electronic displacement in a covalent bond –
inductive and electromeric effects, resonance and hyperconjugation; hemolytic and heterolytic cleavage of
covalent bond – free radicals, carbocations, carbanions electrophiles and nucleophiles; methods of purification
of organic compounds; qualitative and quantitative analysis.

l. HYDROCARBONS, HALOALKANES AND HALOARENES
Alkanes, alkenes,alkynes and aromatic hydrocarbons; IUPAC nomenclature, isomerism; conformation of
ethane, geometric isomerism, general methods of preparation and properties, free radical mechanism of
halogenations, Markownikoff’s addition and peroxide effect; benzene, resonance and aromaticity, substitution
reactions; Nature of C-X bond in haloalkanes and haloarenes; mechanism of substitution reactions.

m. ALCOHOLS, PHENOLS AND ETHERS
IUPAC nomenclature, general methods of preparation, physical and chemical properties, identification of
primary, secondary and tertiary alcohols, mechanism of dehydration; electrophillic substitution reactions.

n. ALDEHYDES, KETONES, CARBOXYLIC ACIDS AND AMINES
Nomenclature, general methods of preparation, physical and chemical properties of the group members;
nucleophilic addition and its mechanism; reactivity of alpha hydrogen in aldehydes; mono and dicarboxylic
acids-preparation and reactions; identification of primary, secondary and tertiary amines; preparation and
reactions of diazonium salts and their importance in synthesis.

o. POLYMERS AND BIOMOLECULES
Natural and synthetic polymers, methods of polymerization, copolymerization, molecular weight of poly -
mers, Polymers of commercial importance,Carbohydrates: mono, oligo and polysaccharides; Proteins
Alpha amino acid, peptide linkage and polypeptides: Enzymes, Vitamins and Nucleic acids (DNA and RNA)

p. ENVIRONMENTAL CHEMISTRY
Air, water and soil pollution, chemical reactions in atmosphere, acid rain; ozone and its depletion; green
house effect and global warming; pollution control.

q. CHEMISTRY IN EVERYDAY LIFE
Drugs and their interaction; chemicals as analgesics, tranquilizers, antiseptics, antibiotics, antacids and
antihistamines; Chemicals in food- preservatives, artificial sweetening agents; cleansing agents – soaps
and detergents.






Contact Details:
Amrita Vishwa Vidyapeetham
Amritanagar,
Ettimadai,
Ettimadai Rd,
Ettimadai,
Boluvampatti,
Tamil Nadu 641112 ‎
0422 268 5000
India

Map Location:
__________________
Answered By StudyChaCha Member
Reply With Quote
Reply


Reply to this Question / Ask Another Question
Your Username: Click here to log in

Message:
Options



All times are GMT +6.5. The time now is 10:17 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, vBulletin Solutions, Inc.
Search Engine Friendly URLs by vBSEO 3.6.0 PL2

1 2 3 4 5 6 7 8