Go Back   2022-2023 StudyChaCha > StudyChaCha Discussion Forum > General Topics

  #1  
Old May 2nd, 2014, 08:04 PM
Super Moderator
 
Join Date: Nov 2011
Default

I want to give the exam of National Eligibility Test of UGC so I need to get the previous year question papers of Maths so can you provide me that?

As you want to get the previous year question papers of Maths of exam of National Eligibility Test of UGC so here is the information of the same for you:

Previous year question papers of Maths of exam of National Eligibility Test of UGC







Attached Files Available for Download
File Type: pdf Previous year question papers of Maths of exam of National Eligibility Test of UGC-2.pdf (1.51 MB, 162 views)

Last edited by Aakashd; June 7th, 2019 at 01:23 PM.
Reply With Quote
Other Discussions related to this topic
Thread
Msc maths model question papers of previous years
Previous year IIT JAM question papers of MSc Maths
TGT Maths Previous Year Question Papers
OU PGCET maths & physics previous solved question papers
UP TGT (Maths) Previous year question paper
GUJCET Maths Previous year question papers
Previous year question papers of CSIR Maths
Common Entrance Examination Kerala (KEAM) previous year question papers of Maths engi
Previous Question Papers CBSE Board Maths
KVS TGT Maths previous year question papers
Previous years question papers of Maths SSLC
Previous year papers of UP TGT Maths
DCE Maths Exam Previous Years Question Papers
Institute of Maths & Applications B.Sc. Entrance previous year question papers
ICSE Board 10th class Maths previous year question papers
Previous year papers of TGT Maths
IIT JEE maths Last year question papers
TGT (Maths) Previous year papers
Last year solved question papers of Maths for CBSE 12th board
Previous years question papers of class 12th CBSE of Maths






  #2  
Old February 23rd, 2015, 10:56 AM
Super Moderator
 
Join Date: Dec 2011
Default Re: UGC NET Maths previous year question papers

UGC NET Maths exam paper will be based on following syllabus :

UNIT – 1 Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral. Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation. Metric spaces, compactness, connectedness. Normed Linear Spaces. Spaces of Continuous functions as examples. Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis. Quadratic forms, reduction and classification of quadratic forms.

UNIT – 2 Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, Power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations. Contour integral, Cauchy’s theorem, Cauchy’s integral formula, Liouville’s theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem. Taylor series, Laurent series, calculus of residues. Conformal mappings, Mobius transformations. Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements. Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler’s Ø- function, primitive roots. Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley’s theorem, class equations, Sylow theorems. Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Polynomial rings and irreducibility criteria. Fields, finite fields, field extensions.

UNIT – 3 Ordinary Differential Equations (ODEs): Existence and Uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs. General theory of homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green’s function. Partial Differential Equations (PDEs): Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs. Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations. Numerical Analysis : Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and Runge-Kutta methods. Calculus of Variations: Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations. Linear Integral Equations: Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel. Classical Mechanics: Generalized coordinates, Lagrange’s equations, Hamilton’s canonical equations, Hamilton’s principle and principle of least action, Two-dimensional motion of rigid bodies, Euler’s dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.

UNIT – 4 Descriptive statistics, exploratory data analysis. Sample space, discrete probability, independent events, Bayes theorem. Random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables, marginal and conditional distributions. Characteristic functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, Central Limit theorems (i.i.d. case). Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution. Standard discrete and continuous univariate distributions. Sampling distributions. Standard errors and asymptotic distributions, distribution of order statistics and range. Methods of estimation. Properties of estimators. Confidence intervals. Tests of hypotheses: most powerful and uniformly most powerful tests, Likelihood ratio tests. Analysis of discrete data and chi-square test of goodness of fit. Large sample tests. Simple nonparametric tests for one and two sample problems, rank correlation and test for independence. Elementary Bayesian inference. Gauss-Markov models, estimability of parameters, Best linear unbiased estimators, tests for linear hypotheses and confidence intervals. Analysis of variance and covariance. Fixed, random and mixed effects models. Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression. Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic forms. Inference for parameters, partial and multiple correlation coefficients and related tests. Data reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical correlation. Simple random sampling, stratified sampling and systematic sampling. Probability proportional to size sampling. Ratio and regression methods. Completely randomized, randomized blocks and Latin-square designs. Connected, complete and orthogonal block designs, BIBD. 2K factorial experiments: confounding and construction. Series and parallel systems, hazard function and failure rates, censoring and life testing. Linear programming problem. Simplex methods, duality. Elementary queuing and inventory models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1.

UGC NET Maths previous year question papers





Attached Files Available for Download
File Type: pdf UGC NET Maths previous year question papers.pdf (398.8 KB, 127 views)
__________________
Answered By StudyChaCha Member
Reply With Quote
Reply


Reply to this Question / Ask Another Question
Your Username: Click here to log in

Message:
Options



All times are GMT +6. The time now is 10:35 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, vBulletin Solutions Inc.
Search Engine Friendly URLs by vBSEO 3.6.0 PL2

1 2 3 4 5 6 7 8