Go Back   2019-2020 StudyChaCha > >




  #2  
Old January 17th, 2014, 10:55 AM
Aakashd
Super Moderator
 
Join Date: Jun 2013
Default Re: Attempt GATE again, Which GATE score will be valid

Graduate Aptitude Test in Engineering (GATE) is an all-India examination which is conducted jointly by the IISc and seven Indian Institutes of Technology on behalf of the National Coordination Board – GATE, Department of Higher Education, Ministry of Human Resource Development (MHRD), Government of India. The GATE score is used for admission in Post graduate courses

The validity of GATE score is of two years & even you have a chance to improve your rank in GATE.

If you will get better than previous rank then you can use your better rank to take admission in M.Tech colleges. You will decide from which rank you want to take admission in any college. You can submit your any of the GATE Rank which will be better of them.
__________________
Answered By StudyChaCha Member
Reply With Quote Quick reply to this message
  #3  
Old October 4th, 2015, 05:33 PM
Unregistered
Guest
 
Default Re: Attempt GATE again, Which GATE score will be valid

I want to give the GATE exam once again and for that I want to get the details that which GATE score will be valid the new one or the old one so can you please give me this information?
Reply With Quote Quick reply to this message
  #4  
Old October 4th, 2015, 05:34 PM
Vinodt
Super Moderator
 
Join Date: Jun 2013
Default Re: Attempt GATE again, Which GATE score will be valid

As you want to get the details that which GATE score will be valid the new one or the old one if you will give the GATE exam once again so here is the information of the same for you:

I want to tell you that if you will give the GATE exam once again then the new GATE score will be valid instead of the old one
Here for your reference I am giving you the details of GATE 2015 which can be taken as tentative for the year of 2016:

Eligibility Criteria:
Candidates must have passed B.E./B.Tech/ B.Arch/ B.Pharm. ( 4 years after 10+2)

Or

Candidates must have passed B.S (Post-Diploma/ 4 years after 10+2)

Or

Candidates must have passed M.Sc./M.A./ MCA or equivalent

Or

Candidates must have passed Int. M.E/ M.Tech (Post BSc) (Four year programme)

Or

Candidates must have passed Integrated M.E./M.Tech or 5 year Dual Degree (after Diploma or 10+2)

Or

Candidates must have passed Integrated M.Sc/Integrated 5 year B.S.-M.S.

Or

Candidates must have passed Professional Society Examinations (equivalent to B.E/B.Tech/B.Arch)

Exam Pattern:
General Aptitude Questions are compulsory for all papers and will carry 15 marks questions

GATE 2015 XE Paper will have a compulsory section in Engineering Mathematics and General Aptitude along with any two of XE sections B to G.

GATE 2015 XL Paper Pattern will have a compulsory section in Section H in Chemistry and General Aptitude along with any two of XL sections I to M

Negative marking will exist for GATE 2015 with a deduction of 1/3 marks for a wrong answer to a 1-mark multiple-choice question and 2/3 marks for every wrong answer to the 2 mark questions.

GATE 2015 Application Fee:
General/OBC-NCL Male Candidates/Other Candidates: Rs 1500
SC / ST / PD category Candidates: Rs 750
Women Candidates: Rs 750

GATE 2015 Application Fee Payment:
Online Net Banking
SBI I-Collect
Axis Bank I-Connect
e-challan

Important Dates:
Online Enrolment: from September 1, 2014 at 00.00 hours
Last Date for Online Application Submission: October 1, 2014 by 11.59 pm extended till October 14, 2014
Payment of GATE 2015 Application Fees and submission of application form: October 20, 2014 (only for candidates with Enrolment ID)
Request for Change in the Choice of City : By November 21, 2014
Download of Admit Card: December 17, 2014
GATE 2015 Examination: January 31, February 1, 7, 8, 2015
Timings: Forenoon: 9.00 AM to 12.00 Noon, Afternoon: 2.00 PM to 5.00 PM
Result Announcement: March 12, 2015

Here for your reference I am giving you the syllabus of Civil Engineering of GATE:

Section 1: Engineering Mathematics
Linear Algebra:
Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors.

Calculus:
Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima and minima, Taylor and Maclaurin series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Ordinary Differential Equation (ODE):
First order (linear and non-linear) equations; higher order linear equations with constant coefficients; Euler-Cauchy equations; Laplace transform and its application in solving linear ODEs; initial and boundary value problems.

Partial Differential Equation (PDE):
Fourier series; separation of variables; solutions of one dimensional diffusion equation; first and second order one-dimensional wave equation and two-dimensional Laplace equation.

Probability and Statistics:
Definitions of probability and sampling theorems; Conditional probability; Discrete Random variables: Poisson and Binomial distributions; Continuous random variables: normal and exponential distributions; Descriptive statistics - Mean, median, mode and standard deviation; Hypothesis testing.

Numerical Methods:
Accuracy and precision; error analysis. Numerical solutions of linear and non-linear algebraic equations; Least square approximation, Newton’s and Lagrange polynomials, numerical differentiation, Integration by trapezoidal and Simpson’s rule, single and multi-step methods for first order differential equations.

Section 2: Structural Engineering
Engineering Mechanics:
System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler’s equations of motion; Impulse-momentum; Energy methods; Principles of virtual work.

Solid Mechanics:
Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Theories of failures; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, buckling of column, combined and direct bending stresses.

Structural Analysis:
Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.

Construction Materials and Management:
Construction Materials: Structural steel - composition, material properties and behaviour; Concrete - constituents, mix design, short-term and long-term properties; Bricks and mortar; Timber; Bitumen. Construction Management: Types of construction projects; Tendering and construction contracts; Rate analysis and standard specifications; Cost estimation; Project planning and network analysis - PERT and CPM.

Concrete Structures:
Working stress, Limit state and Ultimate load design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete; Analysis of beam sections at transfer and service loads.

Steel Structures:
Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections – simple and eccentric, beam-column connections, plate girders and trusses; Plastic analysis of beams and frames.

Section 3: Geotechnical Engineering
Soil Mechanics: Origin of soils, soil structure and fabric; Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability - one dimensional flow, Darcy’s law; Seepage through soils - two-dimensional flow, flow nets, uplift pressure, piping; Principle of effective stress, capillarity, seepage force and quicksand condition; Compaction in laboratory and field conditions; Onedimensional consolidation, time rate of consolidation; Mohr’s circle, stress paths, effective and total shear strength parameters, characteristics of clays and sand.

Foundation Engineering:
Sub-surface investigations - scope, drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories - Rankine and Coulomb; Stability of slopes - finite and infinite slopes, method of slices and Bishop’s method; Stress distribution in soils - Boussinesq’s and Westergaard’s theories, pressure bulbs; Shallow foundations - Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations - types of piles, dynamic and static formulae, load capacity of piles in sands and clays, pile load test, negative skin friction.

Section 4: Water Resources Engineering
Fluid Mechanics:
Properties of fluids, fluid statics; Continuity, momentum, energy and corresponding equations; Potential flow, applications of momentum and energy equations; Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth.

Hydraulics:
Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Kinematics of flow, velocity triangles; Basics of hydraulic machines, specific speed of pumps and turbines; Channel Hydraulics - Energy-depth relationships, specific energy, critical flow, slope profile, hydraulic jump, uniform flow and gradually varied flow

Hydrology:
Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, flood estimation and routing, reservoir capacity, reservoir and channel routing, surface run-off models, ground water hydrology - steady state well hydraulics and aquifers; Application of Darcy’s law.

Irrigation:
Duty, delta, estimation of evapo-transpiration; Crop water requirements; Design of lined and unlined canals, head works, gravity dams and spillways; Design of weirs on permeable foundation; Types of irrigation systems, irrigation methods; Water logging and drainage; Canal regulatory works, cross-drainage structures, outlets and escapes.

Section 5: Environmental Engineering
Water and Waste Water:
Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment. Unit operations and unit processes of domestic wastewater, sludge disposal.

Air Pollution:
Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits.

Municipal Solid Wastes:
Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Noise Pollution:
Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution.

Section 6: Transportation Engineering
Transportation Infrastructure:
Highway alignment and engineering surveys; Geometric design of highways - cross-sectional elements, sight distances, horizontal and vertical alignments; Geometric design of railway track; Airport runway length, taxiway and exit taxiway design.

Highway Pavements:
Highway materials - desirable properties and quality control tests; Design of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible pavement using IRC: 37-2012; Design of rigid pavements using IRC: 58-2011; Distresses in concrete pavements.

Traffic Engineering:
Traffic studies on flow, speed, travel time - delay and O-D study, PCU, peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Control devices, signal design by Webster’s method; Types of intersections and channelization; Highway capacity and level of service of rural highways and urban roads.

Section 7: Geomatics Engineering
Principles of surveying; Errors and their adjustment; Maps - scale, coordinate system; Distance and angle measurement - Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves. Photogrammetry - scale, flying height; Remote sensing - basics, platform and sensors, visual image interpretation; Basics of Geographical information system (GIS) and Geographical Positioning system (GPS).
__________________
Answered By StudyChaCha Member
Reply With Quote Quick reply to this message
Reply


Reply to this Question / Ask Another Question
Your Username: Click here to log in

Message:
Options

Forum Jump


All times are GMT +6.5. The time now is 03:25 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
Search Engine Optimisation provided by DragonByte SEO v2.0.42 (Pro) - vBulletin Mods & Addons Copyright © 2019 DragonByte Technologies Ltd.