#1
 
 
Msc maths model question papers of previous years Is there any website that i can get this previous papers. 
#2
 
 
Re: Msc maths model question papers of previous years
Get me some question paper of M Sc Maths for Kerala University. I am going to face examination in the maths stream. So give me some question paper with answer key for getting prepared for the upcoming examinations.

#4
 
 
Re: Msc maths model question papers of previous years
Here I am providing you the Anna Malai Univ M.Sc Maths Real Analysis question paper: 1. State and prove Taylor’s formula. 2. Define the functions of bounded variation. Show that if f is continuous on [a,b], then f is of bounded variation on [a,b] 3. (a) State and prove generalized mean value theorem. (b) State and prove additive property of total variation. 4. State and prove second fundamental theorem of integral calculus. For the detailed question paper, here is attachment:
__________________ Answered By StudyChaCha Request : Support us by liking us on facebook (please click the LIKE button in the Facebook box below, you should be logged in at Facebook to do so) 
#6
 
 
Re: Msc maths model question papers of previous years
Sir iam Sreenu appearing m,sc maths final year as a private student. iam complete my maximum studies. if it is possible to arrange some model question papers of previous years it very helpful for my preparations. papervi:Complex Analysis;PaperVII:Commutative Algebra;Paper VIII:Functional Analysis;Paper IX:Fluid Dynamics;Paper X:Graph Theory Is there any website that i can get this previous papers. 
#10
 
 
Re: Msc maths model question papers of previous years
Get me some question paper of M Sc Maths for amravati University. I am going to face examination in the maths stream. So give me some question paper with answer key for getting prepared for the upcoming examinations.

#12
 
 
Re: Msc maths model question papers of previous years
Sir i am m.sc. finals (maths) student and going to appear for the exam in summer i need sample question paper of O.R , F.A., D.S., G.R. and F.D. send me reply on stephend1011@gmail.com 
#13
 
 
Re: Msc maths model question papers of previous years
Get me some question paper of M Sc Maths for andhra University. I am going to face examination in the maths stream. So give me some question paper with answer key for getting prepared for the upcoming examinations

#15
 
 
Re: Msc maths model question papers of previous years
friends i am studying m.sc maths first year. april 2012 question paper venum.plz help me, my mail id boominathan2903@gmail.com 
#17
 
 
Re: Msc maths model question papers of previous years Quote:
model 
#18
 
 
Re: Msc maths model question papers of previous years
i am prince from rajapalayam. i want alagappa university Msc maths question paper model... princevedhanayagam@yahoo.com 
#19
 
 
Re: Msc maths model question papers of previous years
sir MSC mathematics part II ky punjab university kay old papers nai mil rahy. kindly ap hamin provide kar sakty hain ya phir ap hamin website meray email address per send kar din (ameermukhtar27@yahoo.com) i shall be very thankful to you 
#20
 
 
Re: Msc maths model question papers of previous years
The M.Sc Mathematics (IDE) Examination question paper is as follows: I. A) a) Show that a finite dimensional subspace of a normed space X is closed in X. b) Show by an example that an infinite dimensional subspace of a normed space X may not be closed in X. c) Show that the closed unit ball ) p ( p ∞≤≤1 l is convex, closed and bounded but not compact. (6+5+6) B) a) Let X, Y be normed spaces and Y X : F →a linear map. Prove that F is continuous if and only if there exists 0 such that x ) x ( F ≤for all X x∈. b) Show that a linear functional f on a normed space X is continuous if and only if z(f) is closed in X. c) Give an example of a discontinuous linear map. (6+6+5) II. A) a) Show that a normed space X is Banach if and only if every absolutely summable series of elements in X is summable in X. b) Let Y be a closed subspace of a normed space X. Show that X is Banach if and only if Y and Y X are Banach spaces in the induced norm and quotient norm respectively. (8+9) B) a) Show that a nonzero linear functional on a normed space is an open map. b) State and prove HahnBanach extension theorem. c) Let X = K2 with norm  ∞and } ) ( x : K )) ( x ), ( x {( Y 0 2 2 1 2 ∈. Define Y g ′∈by g (x(1), x(2)) = x(1). Show that the only Hahn Banach extension of a g to X is given by f(x(1), (x(2)) = x(1). (5+7+5) III. A) a) Let X be a normed space and E be a subset of X. Show that E is bounded in X if and only if, f(E) is bounded in K for every X f ′∈ b) State and prove Closed Graph Theorem. (7+10) B) a) Show that a linear functional f on a normed space is closed if and only if f is continuous. b) State and prove Open Mapping Theorem. c) Let ] b , a [ C X ′with ∞∞x x x and ] b , a [ C Y ′with supreum norm. Show that the map Y X : F →defined by F(x) = x is linear and continuous but not open. (5+7+5) IV. A) a) Let X be a normed space and ) X ( BL A∈. Show that A is invertible if and only if A is bounded below and surjective. b) If X is a normed space and ) X ( BL A∈define the spectrum ) A ( , eigen spectrum ) A ( e and approximate eigen spectrum ) A ( a . Show also that ) A ( ) A ( ) A ( a e . c) If X is a nonzero Banach space over C and ) X ( BL A∈prove that ) A ( is nonempty. (5+7+5) B) a) Let p X l with norm  p ∞p 1 . For X = X .....) ) ( x ), ( x ( ∈2 1 let Show that ) X ( BL A∈. Also find ) A ( e , ) A ( a and ) A ( . ______ 3 4145 b) Define the transpose F′of a bounded linear map ) Y , X ( BL F∈show that F F F ′. c) If X is a Banach space and ) X ( BL A∈show that ) A ( ) A ( . (6+5+6) V. A) a) Define reflexive normed space. Prove that a reflexive normed space is Banach. Is the converse true ? Justify. b) Define a compact linear map and give an example. Show that the set CL(X, Y) of all compact linear maps from a normed space X to a Banach space Y is closed in BL(X, Y). c) Let X be a Banach space and ) X ( BL P∈be a projection. Show that ) X ( CL P∈if and only if P is of finite rank. (5+7+5) B) Let X be a normed space and ) X ( CL A∈. Prove that a) every nonzero spectral value of A is an eigen value of A. b) the eigen spectrum of A is countable. c) every eigen space of A corresponding to a nonzero eigen value of a A is finite dimensional. (7+5+5) I. A) a) Define roundoff error and truncation error. b) Find a root of the equation x3 – x – 1 = 0 by bisection method. c) Find a double root of the equation f(x)= x3 – x2 – x + 1 = 0. (3+10+4) OR B) a) Show that the order of NewtonRapshon method is atleast two. b) Find all roots of the equation 0 6 x 18 x 9 x 2 3 by Graeffe method (root squaring method, 3 times). c) Explain matrix Inversion method to solve a system of linear equation. (4+10+3) II. A) a) Find the cubic polynomial which takes following values y(0) = 1, y(1) = 0, y(2) = 1, y(3)=10. Also obtain y(4). b) Apply Gauss central difference formula and estimate f(32) from following table. x 25 30 35 40 y=f(x) 0.2707 0.3027 0.3386 0.3794 (5+12) OR B) a) Find the polynomial of degree two which takes the values x : 1 2 3 4 5 6 7 y : 1 2 4 7 11 16 22 b) Using Lagrange’s interpolation formula and R(x). Find the form of the function y(x) from the following table. x 0 1 3 4 y –12 0 12 24 (7+10) III. A) a) Find dx dy and 2 2 dx y d at x = 51, using Newton’s forward formula for derivatives for the data. x : 50 60 70 80 90 y : 19 – 96 36 – 65 58 – 81 77 – 21 94 – 61 b) Evaluate ∫ 2 0 dx x sin , by Simpsons 3 1 rd rule dividing the range into six equal parts. (8+9) OR B) a) Evaluate ∫ − 3 3 4dx x by using Trapezoidal rule take h =1. b) Evaluate dy dx e 1 0 1 0 y x ∫∫using, a) Trapezoidal rule and Simpsons’ rule. (5+12) IV. A) a) From Taylors’ series for y(x), find y(0.1) correct to four decimal places if y(x) satisfies 2 y x y −and y(0) =1. b) Given dx dy = 1+y2 where y = 0 when x = 0. Find y(0.2), y(0.4), y(0.6) by using Rungekutta method. (8+9) OR ______ 3 4154 B) a) Find the value of y(0.1) by Picards’ method given x y x y dx dy −, y(0) =1. b) Solve the differential equation 2 y 1 y with y(0) = 0 by Milne’sThomson method. Also find y(0.8) and y(1.0). (8+9) V. A) a) Write a C/C++ program to find the positive root of 0 1 x x ) x ( f 3 by bisection method. b) Write a C/C++ program to find root of 0 5 x 2 x3 by Newtons – Raphson method. (9+8) OR B) a) Write a program in C/C++ to compute the solution of y , x ( F dx dy ), y(x0) = y0 using Eulers’ method. b) Write a program in C/C++ to solve a system of equations using GaussElimination method. (9+8)
__________________ Answered By StudyChaCha Request : Support us by liking us on facebook (please click the LIKE button in the Facebook box below, you should be logged in at Facebook to do so) 
#21
 
 
Re: Msc maths model question papers of previous years
SIR I HAVE MODEL QUESTION PAPERS IN BHARATHIDASAN UNIVERSITY IN MSC MATHEMATICS BEACAUSE PREPARING THE EXAMINATIONS PLEASE SIR KINDLY THE QUESTION PAPERS SEND MY EMAIL ID IS== abiramisanthi2012@gmail.com I AM CDE STUDENT OF THIS UNIVERSITY 
#22
 
 
Re: Msc maths model question papers of previous years
Madurai Kamaraj University (MKU) is the public university in India located in Madurai city in southern Tamil Nadu, India. It was established in 1966.It is affiliated to UGC. As you are looking for the MKU MSc. Mathematics Question paper , here i am providing the list of few questions. (a) (i) State and prove second part of Sylow’s theorem. (ii) Prove that K a Î is algebraic over F if and only if ( ) a F is a finite extension of F. Or (b) (i) State and prove the class equation of G. (ii) Prove that any finitely generated module over an Euclidean ring is the direct sum of finite number of cyclic submodules. 9. Determine the degree of splitting field of the polynomial 2 4  x . 10. Define a perfect field. 11. Complete G ( ) F K, where K is the field of complex numbers and F is the field of real numbers. 12. Define the Galois group of ( ) x f . 13. If G is a solvable group and if G is a homomorphic image of G then show that G is solvable. 14. If M, of dimension m, is cyclic with respect to T, then show that the dimension of k MT is m – k for all m k £ . 15. Let F be a finite field. Then show that F has m p elements where the prime number p is the characteristic of F. 16. Define a normal extension. 17. If ( ) V A T Î then show that T tr is the sum of the characteristic roots of T.w. 18. Define Hermitian adjoint of a linear transformation. 19. If ( ) V A T Î is Hermitian then show that all its characterstic roots are real. Contact: Madurai Kamaraj University Alagar Kovil Road, Madurai, Tamil Nadu 0452 245 8471 Map:
__________________ Answered By StudyChaCha Request : Support us by liking us on facebook (please click the LIKE button in the Facebook box below, you should be logged in at Facebook to do so) 
Have a Facebook Account? Ask your Question Here 
Share this on... 
