CSIR UGC Net Syllabus of Mathematics - 2014-2015 StudyChaCha

Go Back   2014-2015 StudyChaCha > StudyChaCha Discussion Forum > General Topics




  #1  
Old June 7th, 2013, 06:59 PM
Unregistered
Guest
 
Posts: n/a
Default CSIR UGC Net Syllabus of Mathematics

Can you provide me syllabus of Mathematics CSIR-UGC National Ability Tests.
Reply With Quote Quick reply to this message
  #2  
Old June 8th, 2013, 06:06 PM
Senior Member
 
Join Date: May 2013
Posts: 16,364
Default Re: CSIR UGC Net Syllabus of Mathematics

Here I am providing you syllabus of Mathematics CSIR-UGC National Ability Tests.

Some content of the file has been given here:


UNIT – 1 Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral. Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation. Metric spaces, compactness, connectedness. Normed Linear Spaces. Spaces of Continuous functions as examples. Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis. Quadratic forms, reduction and classification of quadratic forms.

The syllabus includes:

Unit 1- Analysis
Unit -2 - Algebra
Unit -3- Differential equations
Unit -4- Descriptive statistics

For further details I am providing you pdf file of the syllabus.

Quote:
Originally Posted by Unregistered View Post
Can you provide me syllabus of Mathematics CSIR-UGC National Ability Tests.
Reply With Quote Quick reply to this message
  #3  
Old December 14th, 2014, 04:28 PM
Super Moderator
 
Join Date: Dec 2012
Posts: 3,649
Default Re: CSIR UGC Net Syllabus of Mathematics

You need CSIR UGC NET Syllabus of Mathematics is I am giving here:

Mathematics

UNIT – 1 Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral. Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation. Metric spaces, compactness, connectedness. Normed Linear Spaces. Spaces of Continuous functions as examples.

Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis. Quadratic forms, reduction and classification of quadratic forms.

UNIT – 2 Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, Power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations. Contour integral, Cauchy’s theorem, Cauchy’s integral formula, Liouville’s theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem. Taylor series, Laurent series, calculus of residues. Conformal mappings, Mobius transformations.

UNIT – 1
Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.
Sequences and series, convergence, limsup, liminf.
Bolzano Weierstrass theorem, Heine Borel theorem.
Continuity, uniform continuity, differentiability, mean value theorem.
Sequences and series of functions, uniform convergence.
Riemann sums and Riemann integral, Improper Integrals.
Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral.
Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation.
Metric spaces, compactness, connectedness. Normed Linear Spaces. Spaces of Continuous functions as examples.

Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations.
Algebra of matrices, rank and determinant of matrices, linear equations.
Eigenvalues and eigenvectors, Cayley-Hamilton theorem.
Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms.
Inner product spaces, orthonormal basis.
Quadratic forms, reduction and classification of quadratic forms.

UNIT – 2
Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, Power series, transcendental functions such as exponential, trigonometric and hyperbolic functions.
Analytic functions, Cauchy-Riemann equations.
Contour integral, Cauchy’s theorem, Cauchy’s integral formula, Liouville’s theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem.
Taylor series, Laurent series, calculus of residues.
Conformal mappings, Mobius transformations.
Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements.

Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler’s Ø- function, primitive roots.
Groups, subgroups, normal subgroups, quotient groups, homomorphisms,
cyclic groups, permutation groups, Cayley’s theorem, class equations, Sylow theorems.
Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain.
Polynomial rings and irreducibility criteria.
Fields, finite fields, field extensions.

UNIT – 3
Ordinary Differential Equations (ODEs):
Existence and Uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs.
General theory of homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green’s function.

Partial Differential Equations (PDEs):
Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs.
Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

Numerical Analysis :
Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and Runge-Kutta methods.

Calculus of Variations:
Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations.

Linear Integral Equations:
Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel.

Classical Mechanics:
Generalized coordinates, Lagrange’s equations, Hamilton’s canonical equations, Hamilton’s principle and principle of least action, Two-dimensional motion of rigid bodies, Euler’s dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.

UNIT – 4
Descriptive statistics, exploratory data analysis.
Sample space, discrete probability, independent events, Bayes theorem. Random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables, marginal and conditional distributions. Characteristic functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, Central Limit theorems (i.i.d. case).

Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution.

Standard discrete and continuous univariate distributions. Sampling distributions. Standard errors and asymptotic distributions, distribution of order statistics and range.
Methods of estimation. Properties of estimators. Confidence intervals. Tests of hypotheses: most powerful and uniformly most powerful tests, Likelihood ratio tests. Analysis of discrete data and chi-square test of goodness of fit. Large sample tests.
Simple nonparametric tests for one and two sample problems, rank correlation and test for independence. Elementary Bayesian inference.

Gauss-Markov models, estimability of parameters, Best linear unbiased estimators, tests for linear hypotheses and confidence intervals. Analysis of variance and covariance. Fixed, random and mixed effects models. Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression.

Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic forms. Inference for parameters, partial and multiple correlation coefficients and related tests. Data reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical correlation.
Simple random sampling, stratified sampling and systematic sampling. Probability proportional to size sampling. Ratio and regression methods.

Completely randomized, randomized blocks and Latin-square designs. Connected, complete and orthogonal block designs, BIBD. 2K factorial experiments: confounding and construction.
Series and parallel systems, hazard function and failure rates, censoring and life
testing.
Linear programming problem. Simplex methods, duality. Elementary queuing and inventory models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1.

Books:


CSIR-UGC - Mathematics Sciences Paperback – 2014
by Dr. V.N. Jha (Author)



Popular Master Guide To Csir-Ugc Net In Mathematical Sciences
RAMESH PUBLISHING HOUSE-DELHI

__________________
Answered By StudyChaCha

Request
: Support us by liking us on facebook (please click the LIKE button in the Facebook box below, you should be logged in at Facebook to do so)
Reply With Quote Quick reply to this message
Other Discussions related to this topic
Thread
IIT JAM Syllabus for Mathematics (MA)
Syllabus Msc mathematics in BHU
CSIR UGC syllabus of Mathematics
B.Sc Mathematics syllabus
IIT JEE syllabus Mathematics
Mathematics Coaching Centre for CSIR NET
CSIR UGC Net Question Papers Mathematics
Syllabus for ISRO JRF in Mathematics
Mathematics Syllabus For M .Sc OU
BTECH CSE CSIR-NET Mathematics
CSIR UGC NET exam Question paper for Mathematics
How should Prepare for CSIR NET Mathematics
Is Coaching required for CSIR NET Mathematics
CSIR UGC Mathematics Solved Paper
BSC Hons Mathematics Syllabus DU
IIT JEE Mathematics Syllabus
GATE Mathematics Syllabus
IIT JAM Mathematics Syllabus
B Sc Mathematics Syllabus









































Have a Facebook Account? Ask your Question Here



Reply


Share this on...

Reply to this Question / Ask Another Question
Your Name: Click here to log in

Message:
Options

Forum Jump


All times are GMT +6.5. The time now is 12:25 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, vBulletin Solutions, Inc.
Search Engine Friendly URLs by vBSEO 3.6.0 PL2

1 2 3 4 5 6 7 8 9